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We derive a system of nonlinear partial differential equations describing the phenomenon of mountain
pine beetles attacking lodgepole pine en masse. A methodology for projecting the behavior of these
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1. Introduction

Mathematical reasoning has played a central role in
ecological theory and application for at least the past
70 years [dating from the independent rediscovery of
Verhulst’s (1845) work by Pearl & Reed in 1920].
From the very beginning of these applications, there
has been an appreciation for the role that spatial
dynamics play in ecological issues [see Holmes et al.,
(1994) and Turchin (1989), for recent reviews].
Irrespective of these early attempts to include spatial
considerations in ecological models, the preponder-
ance of mathematical modeling applications have
involved analysis of spatially independent, ordinary
differential (difference) equation (ODE) models. This
results not from the lack of perceived importance of
spatial effects, but from the conceptual and
procedural difficulty in dealing with partial differen-
tial (difference) equations (PDE), particularly in
describing complex ecological interactions. The
increased computational power offered by modern
computers has resulted in a resurgence of interest and
research on spatial dynamics in ecological phenom-
ena. Indeed, the inclusion of spatial dynamics in

meaningful ecological models has been termed the
‘‘last frontier’’ in ecological theory (Kareiva, 1994).

Spatial dynamics typically play a central role in the
community dynamics of highly mobile insects
(Turchin & Theony, 1993). For example, dispersal is
one of the most important, yet least understood,
factors of bark beetle population biology (Anony-
mous, 1989). Current research with mountain pine
beetle (MPB) (Dendroctonus ponderosae Hopkins),
indicates that spatial dynamics play a crucial role
(Preisler & Mitchell, 1993; Mitchell & Preisler,
1991; Safranyik et al., 1992). MPB has long been
considered a major pest in western forests. As an
aggressive bark beetle (one that kills its host),
eruptions of this species are impressive events.
Outbreaks can be both intensive (up to 80% or
greater mortality) and extensive (covering thousands
of contiguous acres), resulting in serious economic
consequences. It is also becoming recognized that
disturbances, such as MPB outbreaks, may be central
to maintaining the structure, function and health of
western forests.

Interpretation of MPB in this dual role as a serious
economic competitor and as a co-evolved component
of the ecosystem presents an interesting challenge.
One important method we are incorporating to help
address this challenge is development and analysis of
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quantitative models. Aggregation on and dispersal
from a host are of such over-riding importance to
MPB ecology that including spatial dynamics in
model representations is essential for ecological
credibility. For many bark beetle species, including
MPB, dispersal is only one part of the sequence of
events necessary for successful population establish-
ment and expansion. The self-focussing and self-dissi-
pating aspects of the species chemical ecology are also
integral components affecting population spatial
dynamics. Others have developed quantitative models
of bark beetle dispersal and aggregation (Burnell,
1977; Berryman et al., 1989; Safranyik et al., 1989;
Polymenopoulos & Long, 1990; Turchin & Theony,
1993), which we are building on to develop a
large-scale (e.g. forest-sized) reaction-diffusion PDE
model of the spatial interaction between the MPB and
its host trees, including critical components of this
species’ chemical ecology. The mathematical motiv-
ation for this model is fully described below. We refer
to the explicit, spatially dynamic model as the ‘‘global
model’’ because it attempts to capture the full spatial
extent of MPB pheromone ecology. From this
modeling endeavor, we have observed that even
starting with a completely homogenous environment,
the positive and negative feedback generated by
attacking beetles soon results in a rich, spatially
dependent chemical landscape that tends to modify
future events.

The spatial ebb and flow of beetle-produced
pheromones is a striking aspect of the predator/prey
interaction between MPB and pine trees. However,
due to the computational difficulty of PDEs,
continued formulation of the global model is
proving difficult. These difficulties arise primarily
from three sources: estimating parameters for a global
model that are based on data from ‘‘local’ or point
analysis of beetle chemical ecology, computational
intractability of the PDE global model, and
inaccessibility of the global model to both the
mathematical and ecological team members. In
response to these difficulties we have developed
an ODE projection of the global PDE model.
We refer to this model as the ‘‘local projection’’
because it includes the global spatial dynamics
in only an implicit way. The local projection
model provides a tool for focussing on single-tree
processes, but simultaneously includes local conse-
quences of large-scale spatial dynamics. Objectives

for development of the local projection model
are:

(1) Providing a model that can assist in interpret-
ation of published empirical studies on the
chemical ecology of MPB and the use of this
data for estimating of spatial parameters.

(2) Addressing the computational difficulties as-
sociated with numerical solution to PDE
models. Our intent is to provide a meaningful
model in which numerical solutions can be
obtained in a reasonable amount of time on a
486 level PC.

(3) Facilitating collaboration between mathemati-
cians and ecologists analysing the chemically
mediated spatial ecology of MPB interactions
in western forest ecosystems.

The local model will not only assist in understand-
ing MPB/host dynamics, but also address issues
which enhance collaboration between ecologists and
mathematicians.

To produce this local, implicitly spatial model, we
must first have a mathematical description of the
MPB/pine system. This will be accomplished through
the medium of nonlinear reaction-diffusion PDE.
While these are complicated to solve directly, we can
use them to determine how to project the dynamics
onto local spatial modes. This amounts to choosing
a heuristic spatial description for the spatially active
variables which has just enough degrees of freedom to
depict local dynamics. We will choose Gaussian
modes as one way to parametrize the local spatial
behavior. The complicated governing PDE will then
be used to determine how Gaussian parameters evolve
in time, thus producing an ODE description of PDE
behavior. In the final sections of this paper we will
examine the qualitative behavior of these local models
and draw some conclusions about the utility of our
results.

2. Derivation of the Global Model

2.1.     /  

Because of its economic impact, MPB population
dynamics has been the subject of sustained research
efforts dating from the early 1900s, focussed primarily
on protection of valuable forest resources. Although
this insect spends most of its life cycle under the bark
feeding on phloem tissue1, the relatively short phase
of the life cycle in which emergence and attack of new
hosts occurs is essential for continuing the popu-
lation. It is during this time that complex spatial
dynamics come into play.

1 Several processes occur while beetles are in phloem tissue.
These include feeding, pheromone production, mating and gallery
construction. We use the term nesting to include all of these
activities.
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The MPB is typically a univoltine species which
attacks living pines. Unlike most phytophagous
insects, successful reproduction is contingent upon
death of all or part of the host (Sheppard, 1966;
Wood, 1972). Host trees, however, have evolved
effective response mechanisms to defend themselves
against bark beetle attacks (Smith, 1963, 1966; Reid
et al., 1967; Nebeker et al., 1993; Raffa et al., 1993).
Almost all trees are capable of responding to bark
beetle attacks, but only those with a rapid and
sustained reaction are likely to survive. If many
beetles attack the same tree over a short period of
time (e.g. mass attack), they can exhaust the trees’
defensive mechanisms. The final outcome of a bark
beetle dispersal and colonization attempt is, therefore,
dependent upon a series of competing rate reactions
which regulate both beetle arrival and host response
(Raffa & Berryman, 1979; Safranyik et al., 1989).

The evolved relationship between the MPB and
its host trees has resulted in an elaborate chemical
communication system. Through a chemically-
mediated synergistic reaction with host chemical
compounds, female beetles attacking a tree release
trans-verbenol, which, when mixed with a-pinene, is
an aggregation pheromone attracting both sexes
(Pitman et al., 1968; Pitman, 1971; Hughes, 1973). At
higher concentrations of trans-verbenol, higher
proportions of males are attracted (Renwick & Vita,
1970). Attacking males produce exo-brevicomin
which at low concentrations primarily attracts
females (Conn et al., 1983). This system of chemical
communication results in mass attack on a single
focus tree. However, the tree is a finite food resource
that can be over-exploited by too many beetles.
Verbenone, an epidietic1 pheromone, is released by
attacking males and inhibits the landing of additional
beetles at high concentrations (Borden et al., 1987).
Once the concentration of verbenone sufficiently
exceeds the concentration of aggregating phero-
mones, flying beetles in the area switch to nearby host
trees (McCambridge, 1967; Geiszler & Gara, 1978;
Geiszler et al., 1980). When the incoming beetles
switch, the new tree often has greater attack rates and
is colonized more rapidly than the original focus tree
(Rasmussen, 1974). The switching mechanism pro-
vides a means for efficiently utilizing the available
population of attacking beetles.

Although density-dependent beetle pheromone
responses play the dominant role, kairomones
produced by the tree may also play a part (Hunt et al.,

1989). At low population densities, attacking MPB
selectively attack trees weakened by disease or other
stresses (Tkacz & Schmidtz, 1986; Schmitz, 1988;
Schowalter & Filip, 1993). It is hypothesized that
stressed trees release a kairomone signal which
attracts MPB flying in the vicinity, providing primary
attraction to a particular tree (Roe & Amman, 1970;
Gara et al., 1984; Moeck & Simmons, 1991). An
alternative hypothesis is that new hosts are found
using a combination of random landings guided by
visual cues (Schonherr, 1976; Sheppard, 1966)
followed by chemical and tactile cues once on the host
tree (Hynum, 1980; Raffa & Berryman, 1979). Most
likely, both situations occur. Although the combi-
nation of factors that signals a weakened tree remains
an open question, enough evidence exists for the effect
of host compounds on beetle behavior (Norris &
Baker, 1967; Raffa & Berryman, 1982; Raffa, 1988)
that models of MPB spatial dynamics should include
some representation of host volatiles, as well as
beetle-produced pheromones.

The complex chemical cues in the MPB/pine tree
interaction act as self-focusing and self-dissipating
forces. The interaction of these forces results in a
nonlinear density dependent response that results
in complex spatial patterns of resource utilization.
Although the explicit spatial feedback is critical to the
ecological association of MPB with its hosts, there
is no spatially explicit model of the interaction. In
the next two sections we will discuss the construction
of a spatio-temporal mathematical model of the
MPB/host spatial ecology.

2.2.  

Building on previous models of the temporal
dynamics of MPB attacks [and in particular
Berryman et al. (1989)], we define the following
variables, which depend on the spatial location, x, y
and time, t:

P(x, y, t)=population of airborne beetles.
Q(x, y, t)=population of (alive) nesting/feeding

beetles.
A(x, y t)= concentration of beetle-produced

pheromones.
C(x y, t)= concentration of volatiles released by

host trees.
S(x, y, t)= resin outflow from attacked trees.
R(x, y, t)= resin capacity of host trees.
H(x, y, t)=number of MPB attack holes.

The number of flying beetles is monotonic (when
we neglect terms describing in-flux of flying MPB),
and decreases in proportion to the death rate (v1P)
and the number of beetles who land and attempt to

1 The term epidietic describes specific sorts of animal behavior
which are used principally for population density regulation
(Prokopy, 1980).
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nest in a tree (r1P(1+ sA)). The term r1P models
random attack by flying MPB, while r1sAP models
attack rate enhancement in the presence of phero-
mones. This gives a dynamic equation for changes in
flying MPB density:

P� =−v1P− r1P(1+ sA).

Every beetle who attempts to nest is (at least
temporarily) a living, nesting beetle, and so the
population Q must grow proportionally to
r1P(1+ sA). They will also die at some rate (much
smaller than the death rate of flying MPB), v2Q.
Finally, beetles will be killed by the natural defense
mechanisms of the host tree, resin pitch-out and
toxins. However, only that portion of resin flowing
out through holes occupied by living MPB will kill
nesting beetles, and so the population of nesting MPB
should decrease in proportion to the resin out-flow
through occupied holes, b1S(Q/H). This gives an
equation of motion for Q,

Q� =−v2Q+ r1P(1+ sA)− b1S
Q
H

.

This equation is similar to eqn A2, in Berryman
et al. (1989), which also models the density of
attacking beetles, with one important conceptual
difference. The Berryman model includes the effect
of beetle-produced pheromones as a quadratic
function of resin levels. In our model, the differential
effect of pheromones arises from the concentration of
the suite of beetle-produced pheromones, A. As this
increases beyond some threshold, the suite of
pheromones becomes anti-aggregative (see the discus-
sion of fluxes, below). The concentration of A grows
proportionally to the density of nesting beetles
(Schlyter et al., 1989). Thus, differentiation between
attraction and anti-attraction in our model is an
attribute of the beetle and not the host. Both
representations are first-order approximations to a
process that involves both host- and beetle-produced
chemicals.

The rate at which the number of attack holes
increases is precisely equal to the number of MPB
attempting to nest. On the other hand, as resin flows
through galleries it crystallizes, slowly closing the
hole. This means that holes should be lost at a rate
proportional to the amount of resin out-flow, S,
which itself is proportional to the number of holes
and the available resin capacity, HR. Therefore, the
rate of chage of H is given by

H� = r1P(1+ sA)− r4HR.

Explicitly modeling the dynamics of attack holes, H
allows us to incorporate the effects of the temporal
distribution of attacks. Much of the hypothesized
selection pressure for evolution of the chemical
communication in bark beetles is to overcome tree
defenses by numerically overwhelming tree defenses,
the so-called ‘‘mass attack’’ strategy. Focussing
attacks over a short period of time is critical to a
successful attack because of the capacity for the tree
to recover if its defense mechanisms are not exhausted
rapidly enough. Probability of tree mortality is not
simply a function of total attacks but is highly
dependent on the time frame over which these attacks
occur. In this context, H functions as a mechanism
for incorporating attack synchrony.

It remains to be determined how the local resin
capacity and the amount of resin outflow vary with
time. We assume that an unstressed tree would
stabilize its resin capacity at the reservoir capacity, R0,
and that small deviations from this capacity would die
away at a characteristic relaxation rate. If, on the
other hand, the resin capacity is driven to zero no
replenishment is possible. Consequently, the rate of
change of the resin capacity should be proportional to
R(R−R0). On the other hand, the resin capacity is
depleted at a rate proportional to the number of
attack holes and the available amount of resin which
can flow out through the holes. These two processes
give an equation of motion:

R� = r2(R0 −R)R−S.

Modeling resin capacity in this way is similar to the
approach of Berryman et al. (1989), with the slight
difference in interpretation that in the Berryman
model R is the amount of resin in the average beetle
gallery, and in our interpretation R is the whole tree
reservoir. Both interpretations are consistent with the
idea of resin, and resultant tree resistance, being
reduced as resin is drained from the tree due to beetle
attacks (Raffa & Berryman, 1983a, b). The amount
of out-flow is assumed to be in proportion to the
number of attack holes drilled and the amount of
resin available to flow through those holes, giving a
constituitive equation for S:

S= r3HR.

This gives a complete set of equations reflecting
behavior in the absence of dispersal and aggregation:

P� =−v1P− r1P(1+ sA) (1)

Q� =−v2Q+ r1P(1+ sA)− b1r3QR (2)

R� =[r2(R0 −R)− r3H]R (3)
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H� = r1P(1+ sA)− r4HR (4)

S= r3HR. (5)

These represent host response to attack and the effect
of MPB attack on a single tree, ignoring interactions
at large space scales.

2.3.      



At low population levels a successful strategy for
MPB is to attack trees weakened by some stress factor
(e.g. weather, disease, less aggressive associated bark
beetle ssp.). As population levels increase many
beetles are able to focus their efforts on trees which
are currently under attack. At low population levels,
in our model we assume pioneer beetles respond to
kairomones (the variable C) released by a host tree.
As the population attacking the host tree grows,
concentrations of attracting pheromones (the variable
A) increase, and soon becomes the dominant factor
affecting spatial redistribution of flying MPB.
Because host kairomones are important synergists
and precursors to MPB pheromones, the kairomone
concentration, C, is important at all population
levels. Currently, for simplicity we only explicitly use
the kairomone concentration as a means to initialize
the nonlinear attack mechanism, mimicking a stressed
or unhealthy tree. Depending on the concentrations
of A and C, the population of flying MPB will
redistribute themselves to take advantage of weak-
ened groups of trees. It is this redistribution that is
essential to capturing the dynamics of mass attack,
which we address here.

Our mechanism for understanding spatial redistri-
bution is to consider mass balances in some arbitrary
spatial domain, V. The total number of beetles in that
domain is

N=gV

Pdxdy,

and can change only due to movement of beetles
across the boundary of V (flux) or loss/emergence of
beetles within V (sinks/sources). This gives us a simple
law,

d
dt

N=Flux into V−Flux out of V

+Source Terms−Sink Terms (6)

The source and sink terms are all of those terms
which we analysed above, comprising the local,
temporal dynamics of the system, integrated over the

domain V. For brevity we will denote these terms as
f(P, A, x, y, t), and note that

Source Terms−Sink Terms=gV

f dxdy.

The flux terms will quantify how the population of
flying MPB moves.

We will denote the flux vector by f� , and assume
that it has three basic components, reflecting the
beetles’ recognition of potential hosts, their response
to pheromones and the degree of randomness in their
behavior. Thus,

f� =f� A +f� C +f� P ,

where: f� A is flux due to the beetles’ attraction
to/repulsion from the suite of pheromones, A. The
summed response of these pheromones is attractive in
small concentrations, anti-aggregative in higher
concentrations, and the pheromones are released only
by nesting/feeding beetles. Let A0 be the concentration
at which the pheromone becomes anti-aggregative.
We presume that the net beetle population will move
in the direction of pheromone gradients, and that the
number moving into V will be proportional to the
local population density, giving

f� A = nP(A0 −A)9A(x, y, t).

Here the parameter n is the constant of proportion-
ality.

f� C is flux due to the beetles’ recognition of potential
hosts, dependent on C(x, y, t) and the local density of
flying beetles. Thus, beetles will move in a direction
in which they perceive some spatial change in the
volatiles emitted by damaged trees. The rate at which
they move will be proportional to the local density of
flying beetles and the strength of their perception.
Thus, we write

f� C = kP(x, y, t)9C(x, y, t).

The parameter k is the constant of proportionality.
f� P is flux to the beetles’ random redistribution in

the absence of other influences, dependent only on
spatial changes in the density of flying beetles. Given
a population of randomly moving beetles, net flux
occurs only because of changes in population density,
and the flux should be in the opposite direction of
increasing population gradient. This gives

f� P =−m9P(x, y, t).

Here the parameter m is the constant of proportion-
ality.

Now we can return to the balance law, (6). The
total flux into V will be the integral of the flux vectors
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around the boundary of the domain. This gives an
expression

d
dt

N=g1V

f� ·n� ds+gV

f dxdy.

Here n� is the unit normal vector to the boundary of
V, 1V. Using the Divergence Theorem on the integral
around the boundary gives

d
dt

N=−gV

9·f� dxdy+gV

f dxdy.

Writing this expression in terms of only one
integration,

gV $1P
1t

+9·f� − f% dxdy=0.

Since V is completely arbitrary, the integrand must
be zero, giving a spatio-temporal evolution equation
for P,

1

1t
P=−9·{[k9C+ n(A0 −A)9A]P− m9P}

+ f(A, P, x, y, t). (7)

We will assume that the chemical concentrations A
and C obey standard diffusion laws, but with sources
and sinks of their own. For the suite of pheromones
released by nesting beetles, the source should be the
number of living, nesting beetles, Q. The losses will
be due to diffusion through the canopy and chemical
decomposition. These effects lead to a linear diffusion
equation for A,

1

1t
A= b192A+ a1Q− d1A. (8)

For host volatiles, which we track with the
concentration C, the source is an unknown function
of time, g(t). Again, we expect some loss due to
chemical decomposition, giving an equation similar to
that for A,

1

1t
C= b292C− d2C+ g(t). (9)

These two equations, along with (20), provide a
complete description for the spatially-varying
components of the MPB/host system.

2.4.   

We can now define the entire system for the
seven dependent variables P, Q, R, S, H, A, C.

First we note that the source/sink function for P in
(7) is

f=−v1P− r1P(1+ sA)+ g(x, y, t),

where g is an arbitrary emergence distribution. This
gives the complete equation for P,

1

1t
P= −9·{[k9C+ n(A0 −A)9A]P− m9P}

−v1P− r1P(1+ sA)+ g(x, y, t). (10)

The other spatially dynamic variables are the
chemical concentrations, which satisfy diffusion
equations,

1

1t
A= b192A+ a1Q− d1A, (11)

1

1t
C= b292C+ g(t)− d2C (12)

Here g(t) is a source of primary chemical attraction.
The variables Q, R, S and H depend on space
parametrically, and satisfy the equations,

1

1t
Q= −v2Q+ r1P(1+ sA)− b1r3QR, (13)

1

1t
R=[r2(R0 −R)− r3H]R, (14)

S= r3HR, (15)

1

1t
H= r1P(1+ sA)− r4HR. (16)

Equations (10–16) are a complete spatio-temporal
description of the dependent variables controlling the
behavior of MPB attacking host pines. A complete list
of parameters is included in Table 1.

We will discuss the properties of this model in
future work. Since the model involves nonlinear
partial differential equations, one of which has
anti-diffusive properties, even numerical approaches
are difficult. Moreover, data on spatial distributions
of MPB are difficult to procure. What data exists on
MPB attacks is typically local, taken at individual
locations. Consequently, it is very difficult to verify or
falsify the model based on existing data; the equations
above are predicting spatial behavior which has not
been sufficiently measured, though its effects have
been observed. What is needed is a rational way to
derive from these equations a purely local temporal
model, say on the scale of a single tree, which
nonetheless reflects the global behavior of spatial
redistribution and mass attack. Deriving such a model
is the subject of the next section.



       249

T 1
The list of parameters appearing in the global PDE model for MPB redistribution
Parameter Description

k A measure of the beetles’ perception of and attraction to weakened pines
n Attractiveness of pheromones
m Diffusivity of flying beetle population due to randomness
A0 Critical concentration at which pheromone becomes repulsive
a1 Rate of pheromone creation by burrowing beetles
b1 Rate of pheromone diffusion
d1 Loss rate of pheromone
g(t) Rate of kairomone creation (not constant)
b2 Rate of kairomone diffusion
d2 Loss rate of kairomone
R0 Local peak resin capacity
s Rate of directed infestation
r1 Rate of sampling infestation
r2 Rate of resin replenishment
r3 Rate of resin outflow through burrows
r4 Rate of resin crystallization
v1 Death rate of airborne beetles
v2 Death rate of nesting beetles
b Rate at which trees’ natural defenses kill nesting beetles
g(t) Emergence rate of new populations of airborne beetles (not constant)

3. Rational Local Equations

3.1.    

To produce a local set of equations reflecting global
redistribution we must ‘‘parametrize’’ spatial behav-
ior in a local way, that make requirements about the
temporal evolution of parameters in a spatial
description of variables. To do this, we must choose
a parametrized spatial form for the variables, then
allow the parameters to vary temporally in a way
consistent with the governing PDE. We will assume
that the variables are Gaussian in space. Letting l
denote the distance from the focus tree,

P=
2p(t)
wp (t)

e−l2/wp (t)

A=
2a(t)
wa (t)

e−l2/wa (t)

C=
2c(t)
wc (t)

e−l2/wc (t)

Q=
2q(t)

w
e−l2/w

R=
2r(t)
w

e−l2/w

H=
2h(t)

w
e−l2/w

S= r3RH.

This will not provide an exact solution of the PDE,
but will reflect the character of the PDE behavior. The
dependence of Gaussian parameters on time is explicit
above. The number w is constant, representing the
characteristic size of the tree of interest. The variables
Q, R, H and S vary temporally only in size, reflecting
the fact that their spatial scale is fixed.

For the diffusion of chemical concentrations, the
Gaussian ‘‘ansatz’’ is exact: the radial diffusion
equation maps Gaussians to Gaussians over time. On
the other hand, the Gaussian ‘‘ansatz’’ for the flying
MPB is extremely optimistic—solutions to the
governing equations for P are surely not Gaussian.
We can, however, understand this description of P in
a statistical spirit: we are asking for a normal
distribution in space to be fitted to the population,
recognizing that this will force the Gaussian
parameters to evolve with time.

To determine how the Gaussian parameters vary
in time, we will integrate equations (10–12) over
space. We illustrate this procedure on (11). Noting
that

g
a

0

2
M
l

e−l2/lldl=M,

and that

g
a

0

2
M
l

e−l2/ll3dl=Ml,
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integrating (11) over space gives

ȧ=
d
dt g

a

0

Aldl=g
a

0 $b1
1
l

1

1l
(lAl )+ a1Q− d1A%ldl

= a1q− d1a.

Performing the same integration with an additional
l2 in the integrand gives

d
dt

awa =
d
dt g

a

0

Al3dl

=g
a

0 $b1
1
l

1

1l
(lAl )+ a1Q− d1A% l3Ndl

=(4b1 − d1)awa + a1qw.

These two equations may be simplified to give
a system of two differential equations for the
pheromone parameters a(t) and wa (t),

ȧ= a1q− d1a, (17)

and

ẇa =4b1 + a1q
w−wa

a
. (18)

Equations for c(t) and wc (t) are derived similarly,
treating g as a delta function in space for the purposes
of integration

ċ= g− d2c, (19)

and

ẇc =4b2 − g
wc

c
. (20)

Transforming the purely local eqns (13, 14, 16) is
much simpler, since these equations already track
variables whose dependence on space is implicit.
Although these equations describe how densities vary
in time, the normalizing area factor for a single
lodgepole pine (0w) is constant for these variables.
This implies that essentially the same equations hold
for the number of nesting MPB, q(t), the number of
entrance holes, h(t), and resin capacity, r(t). The only
trouble is that some of the forcing terms depend on
the rate of infestation, which in turn depends on the
spatially-varying variables P and A. To overcome this
difficulty we introduce the concept of a ‘‘radius of
engagement’’, r. This is the radius about the tree
within which a flying MPB actively perceives and

engages the tree of interest. The number of flying
MPB infesting the tree at any given time will then be

I=g
r

0

r1P(1+ sA)ldl

= r1p(1− e−r2/wp )$1+2
sa

wa +wp
(1− e−r2/wa )%.

The governing equations for the purely local variables
become

q̇= I−v2q− b1r3qr, (21)

h� = I− r4hr, (22)

and

ṙ= r[r2(R0 − r)− r3h]. (23)

The last and most serious stumbling block is
projecting the equation for flying MPB (10) into a
local framework. All of the terms involving dependent
variables can be integrated as above, but the term g

having to do with the background emergence of MPB
in the forest will become unbounded in the integral.
To overcome this, we examine the flux of the
background MPB generated by the local versions of
A and C. The flux of background beetles through a
circle of radius L is

f(L)=−2pLg$k
1C
1l

+ n(A0 −A)
1A
1l %.

The total flux of background MPB into the local
framework (normalized by a factor of 2p) is given by
the integral

g
a

0

f(l)ldl=2g(t)$kc+ na0A0 −
a
wa1%,

when this integral is positive. Hence, we can define
the forcing, F, due to flux of background MPB
into the local framework as

F=max62g(t)$kc+ na0A0 −
a
wa1%, 07.

With this approach to connect the general
emergence of flying MPB with forcing for the number
of local beetles, we can now proceed to apply the
integrations

g
a

0

(·)ldl and g
a

0

(·)l3dl
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to (10). This results in ordinary differential equations
for p(t) and wp (t),

ṗ=F− I−v1p, (24)

and

ẇp =4m+
wp

p
F+2sr1

aw2
p

(wa +wp )2 −8k
cwp

(wc +wp )2

−8nawp
A0wa (wa +2wp )2 −2a(wa +wp )2

wa (wa +wp )2(wa +2wp )2 . (25)

Equations (17–25) define our local model of MPB
mass attack on a particular focus tree.

3.2.  

The parameter space for the local equations is large
(twenty-one dimensional). Although some research
has been directed at understanding spatial impli-
cations of bark beetle chemical ecology, values for
most of the parameters in our local model have not
been explicitly measured. We therefore use published
information to establish orders of magnitude for
unknown parameter values based on known quan-
tities. We assume no dispersal effect due to wind, and
microorganism-induced changes in host physiology
are inherent in relationships described below. The
basic timescale we have chosen is the beetle-flight-
hour (fh) of which there are approximately five per
day. Area is measured in hectares (1 hec=104 m2).
We have contemplated general, non-dimensionaliza-
tion, and undertake it in a paper currently in
preparation. However, we have found that although
non-dimensionalization gives the modeling effort
fewer degrees of freedom, it also reduces our ability
to directly interpret model responses. Consequently,
we have left all parameters (save resin capacity, for
which no reasonable dimensions currently exist),
dimensional in what follows. At the very least, this
has helped us understand the functions of the
parameters we vary below.

The first focus of the parametrization effort is the
tree’s defensive response. We have chosen to
non-dimensionalize the tree’s resin capacity, r, using
r= r̂R0. The equations for hole dynamics and resin
capacity can then be written

d
dt

r̂=[r2R0(1− r̂)− r3h]r,

and

d
dt

h= I− r4R0hr̂.

Measured rates of resin replenishment seem to
indicate that a tree’s resin capacity recovers on a

2-day, or 10 fh scale (Nebeker et al., 1995). Therefore

r2R0 2 0.1 fh−1.

If we assume that crystallization of resin occurs
approximately twice as rapidly,

r4 2 0.2 fh−1.

We obtain the rate of resin outflow, r3, indirectly.
Although the critical density of attack varies among
trees and seasons (Raffa & Berryman, 1983), for the
purposes of this modelling endeavor we assume that
a general attack rate of 500 MPB over a 5-day period
is critical for overwhelming a healthy tree’s defenses
(Berryman, 1978; Wood, 1972). This translates into
an infestation rate of I=20 fh−1. The two differential
equations above can be written in the form

d
dt $ r̂−

r3

r4R0
h%= r2R0(1− r̂)r̂−

r3

r4R0
I.

If I is the critical cut-off at which a tree’s defenses are
overwhelmed, then below this attack rate a tree
survives. Parsing this mathematically, the l.h.s. of the
above equation must be zero or less at this attack
density. Noting that (1− r̂)r̂E 1

4 gives

r3

r4
I2 1

4r2R0.

Solving for r3 gives

r3 2 0.00025 R0.

We have chosen an arbitrary reference scale R0 for
convenience; the defensive responses are all scaled
relative to the units of R0.

For purposes of estimating the attack rates of the
flying MPB, we assume that 5%/fh of the flying
population randomly lands and samples trees, giving

r1 2−ln(0.95)fh−1.

We estimate that the attack rate in the presence of
attracting pheromones is on the order of five times or
more greater, giving

sA0 2 5,

which will become definite when A0 is determined.
The rate of beetle pitch-out is a function of resin flow
(Raffa & Berryman, 1983b) such that

br3R0 = 24
5 MPB-fh−1,
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meaning that resin flowing through a burrow
pitches the occupying beetle out at a rate of 1 per
real hour, where 24/5 translates beetle flight hours
to real hours.

The diffusion equations for pheromones and
kairomones are parametrized using information in
(Geiszler et al., 1980). From this chemical plume
data, we estimate

b1 =50 hec− fh−1.

The loss rate of pheromone due to vertical diffusion
can be estimated by choosing an eigen-function which
decays vertically on the scale of the canopy, say 10
meters. This gives a loss rate due to diffusion of

d1 2
b1

100 m2

104 m2

hec
=500 fh−1.

Borden et al. (1986) estimated that female MPB
emit trans-verbenol at an average rate of 10 ng fh−1.
We change this to a rate of concentration emission
by averaging over the area of emission,
w2 1×10−5 hec. Changing seconds to flight hours,
and converting to tens of micro-grams of pheromone
(tmg) gives

a1 2 25
tmg

MPB-fh-hec
.

We assume the rates of loss and diffusion of
kairomone concentration to be a similar magnitude to
the loss of pheromone. However, based on pro-
duction rates of a-pinene oxidation products (Hunt
et al., 1989), we assume the rate of kairomone
production in the absence of beetles to be an order of
magnitude smaller. Currently, the only effect of
kairomones in our model is in the initial attraction
of MPB to a focus tree.

Next we parametrize the equations for the flying
MPB. We assume the rate of death for the flying
population of MPB to be 5% per day, giving

v1 =−0.2 ln(0.95)fh−1.

The rate of death of nesting MPB we take to be zero
on the timescale of this model. Turchin & Theony
(1993) estimated a parameter for the southern pine
beetle (Dendroctonus frontalis) which is related to the
ratio of diffusion rate (m) and loss rate of the
population (r1 +v1). Using our estimates for the loss
rates and Turchin & Theony’s estimate for the
southern pine beetle parameter, we find

m2 1 hec− fh−1.

It remains to estimate the flux parameters for
kairomone and pheromone response (k and n). We
assume that pheromone response is on the order of

ten times more powerful than kairomone response,
giving

A0k=0.1n.

Geiszler et al. (1980) suggest that MPB are responsive
to concentrations of 0.003 ng m−3. We presume that
this means they are sensitive to gradients in
concentration on the order of 0.003 ng m−4. We
assume a directed flight velocity for flying MPB of
5 km per hour, and a vertical air column of 3 meters.
We may then write

nA0 2
m4

0.003 ng
104 ng
tmg

5×103 m
fh

×
1 hec2

108 m4

1
3 m

2 50
hec2

tmg-fh
.

From Geiszler et al. (1980) we estimate that the
rate of pheromone production that occurred at
‘‘switch-over’’ is 40 tmg-fh−1. Taking into account the
diffusivity gives

A0 2 40
tmg
fh

fh
50 hec

=0.8
tmg
hec

.

As a consequence, this gives

n2 60
hec3

tmg2 − fh
.

4. Qualitative Behavior of the Model

4.1.   

The number of attacks necessary to kill a lodgepole
pine has been estimated between 11.5 and 29.5 attacks
per square meter (Cole, 1962; Reid, 1963; Raffa &
Berryman, 1979; Klein et al., 1978). Based on these
values, for an average size lodgepole pine, approxi-
mately 500 total attacks would be required for a
successful infestation. For our model to achieve this
density many parameters were fine tuned from the
values in the previous section. Although these
parameters are slightly different, they are of the same
order of magnitude as in the previous section. We did
not tune rate parameters, and as we will note below
the correspondence between the timescales over
which attack and saturation are surprisingly good.
For what may seem to be a very complicated model,
the qualitative dynamics are very simple: a mass
attack is either successful and the focus tree is
rendered defenseless, or the tree successfully defends
itself from attack. A successful attack is characterized
by two stages. In the first stage the spatial scale of
the population of responding beetles decreases as
randomly distributed flying MPB orient themselves
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T 2
Parametric values for numerical simulation and units. Units involving resin are measured

relative to R0.
Parameter Value Units Parameter Value Units

a1 20 tmg hec−1 fh−1 MPB−1 g(t) — tmg hec−1 fh−1

b1 50 hec fh−1 b2 0 hec fh−1

d1 1000 fh−1 d2 0.1 fh−1

A0 3 tmg hec−1 n 100 hec3 tmg−2 fh−1

m 0.3 hec fh−1 k 10 hec2 tmg−1 fh−1

v1 0.0103 fh−1 v2 0 fh−1

s 10 hec tmg−1 b 1.92×104 MPB R−1
0

r1 0.0513 fh−1 r2 0.1 R−1
0 fh−1

r3 2.5×10−4 fh−1 r4 0.1 R−1
0 fh−1

R0 1 R0 r 2 hec1/2

w 0.1 hec g(t) — MPB hec−1 fh−1

on the focus tree and attack. We refer to this as
‘‘nonlinear self-focussing’’ since the mechanism of
focussing involves nonlinear spatial feedback: the
more beetles that attack the focus tree, the more
pheromone is emitted, leading to more beetle attacks.
The second stage of an effective attack is the creation
of an ‘‘epidietic wave’’ of repulsed beetles as
pheromone concentrations grow too large. This is
termed as ‘‘switching’’ (Geiszler & Gara, 1978;
Geiszler et al., 1980; McCambridge, 1967). In our
model this phase is characterized by linear growth
in the scale of the cloud of reacting MPB (see
Fig. 7).

To illustrate our model’s depiction of a successful
attack, we chose the parameter values as in Table 2.
For an emergence curve we used

g=10$tan h0t−25
10 1−tan h0t−75

10 1%.

The structure of the emergence curve is depicted in
Fig. 1. The time variable t, is measured in flight hours,
so that the emergence curve peaks and declines over
a period of 20 days. We have chosen relatively small
parameter values for the diffusion and creation of
kairomones so that kairomone concentrations serve
only as a primary attractant, but do not influence the
development of mass attack. As a pre-attack source
of kairomones, we specified

g(t)=0.1 exp$−
t
10%.

The behavior of the total population of MPB
reacting to the single tree is illustrated in Fig. 2. The
reaction of the flying MPB has two phases: an initial
attack phase during which the population of MPB
respond by moving toward the focus tree. In the
second stage, all MPB which have not made

F. 2. Total number of beetles, p(t), responding to a single tree
under attack as a function of flight hours. See Raffa & Berryman
(1983) for empirical curves of similar shape.

F. 1. Emergence curve, g(t), in beetles/hectare against flight
hours. The entire emergence occurs over a period of 28 days.
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F. 3. Number of MPB, q(t), nesting in the focus tree as a
function of flight hours.

F. 5. Area scale wp , of the cloud of attacking beetles, measured
in hectares and plotted against number of flight hours.

successful attacks are repelled by high concentrations
of pheromones at the focus tree (see Fig. 5). The
behavior of the nesting population is depicted in
Fig. 3. The population of beetles resident in the focus
tree levels off at approximately 500 in this simulation
of a successful attack. At 20 flight hours the
population curve has an inflection point caused by the
discontinuity in the flux function, which at this point
has hit zero as the net effect of the pheromone suite
become anti-aggregative at the focus tree. This is also
the time at which the tree has been rendered
effectively defenseless. Figure 4 illustrates the focus
tree’s resin capacity, which has become nearly zero at
50 flight hours.

The data in Fig. 3 can be compared with data on
the cumulative number of successful attacks pub-
lished by Geiszler et al. (1980). In their observations,

an attack on a single focus tree saturated with on the
order of 120 nesting beetles in 2 m of bole, or around
500 in the whole tree. The number of attacks
increased from zero to the saturation value in 9 days,
or 45 flight hours. The correspondence between these
numbers and Fig. 3 is striking. The parameter values
in Table 2 were chosen to deliver a similar number of
nesting MPB, but the rate parameters were estimated
independently, which makes it unlikely that the
correspondence in rates of attack is accidental. This
comparison is only a qualitative but is heuristic
nonetheless.

The difference between the two phases of attack
behavior are made clear in Fig. 5. Here the cloud size
wp , of flying MPB responding to attacks at the focus
tree is plotted against flight hours. In the initial,
attack phase (from 0 to 20 flight hours) the scale over
which beetles attack first increases (as the size of the
pheromone cloud grows) and then decreases to nearly
zero (as the nonlinear self-focussing occurs). In the
second, epidietic phase of the attack, flying MPB are
repulsed from the focus tree by the anti-aggregating
pheromone suite (plotted in Fig. 6). The spatial scale
of the involved MPB grows linearly, reflecting the
existence of a ‘‘wave’’ of repulsed MPB leaving the
vicinity of the focus tree.

4.2.     

The parameter space is large and complex, and a
sensitivity analysis of these equations in parameter
space is more appropriately the subject of a thesis in
applied mathematics than of the current paper.
However, it is possible to illustrate how some of the
most important parameters affect the behavior ofF. 4. Resin capacity of tree as a function of flight hours.
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F. 6. Pheromone concentration at tree, a(t), measured in
tmg/hectare, as a function of flight hours.

F. 8. Number of successful attacks as a function of b.

time needed for MPB to successfully attack and nest
in the tree also increases. The final number of
successful attacks on a single tree proved to be an
increasing function of b in this parameter regime
(Fig. 8). This result agrees with the field determi-
nations of Raffa & Berryman (1983b). As the tree’s
resin defense system increases (e.g. a vigorous, healthy
tree), the number of attacks necessary for overwhelm-
ing the tree also increases. The net result: if the tree
defended itself more effectively, more beetles arrived
to overwhelm it. At much higher levels of b, the tree
was able to defend itself successfully and the number
of successful attacks fell to zero.

In Fig. 9 the behavior of MPB populations
attacking several trees as a function of time are
plotted simultaneously for different A0. A0 is the
critical concentration at which the pheromone suite
becomes repelling. As we expected, as A0 increased,
more attacks occurred on a given tree before
switching. Notice the bifurcation which occurs for
small values of A0 (Fig. 10). From the transition at

solutions. The three parameters we have chosen to
study here are:

(a) b, which controls the effectiveness of resin
pitch-out as a defense mechanism,

(b) A0, which controls the epidietic effects of the
pheromone suite, and

(c) d1, which controls how rapidly the pheromone
concentration decays through canopy losses or
chemical decomposition.

In this section we will study how varying these
parameters changes the model’s prediction of the final
number of successful attacks on the focus tree.

In Fig. 7 the behavior of MPB populations
attacking several trees with different b are plotted
simultaneously as a function of time. As the trees’
capacity to pitch-out incoming beetles increases, the

F. 7. Population/time plots for six different values of tree
defensive ability, b=0.25b
 to 1.25b
 , b
 =24(5R0r3)−1.

F. 9. Temporal behavior of the infesting population as a
function of A0 for parameter values between 0.75 and 3.75.
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F. 10. Net number of successful attacks against A0.
F. 12. Total number of successful attacks as a function of d1.

A0 1 0.2, the population of nesting MPB grows
approximately linearly with the threshold for
repulsion. This was more or less in concord with our
expectations; A0 is directly related to the amount of
pheromone produced when beetles ‘‘switch’’ from a
self-focussing attack to an epidietic wave of dispersal.

In Fig. 11 the behavior of several infesting
populations as a function of time are plotted
simultaneously for different d1. In Fig. 12 we plot the
final number of successful attacks against the
parameter d1. As the rate of loss of pheromone is
increased, the net number of successful attacks
increases until d1 approaches 1200. This may seem to
be counter-intuitive, but increasing the rate of loss of
pheromone delays the time at which the pheromone
concentration approaches anti-aggregative levels,
thus allowing a tighter focus of attacking MPB. As d1

passes 1200, the loss rate is so high that the
pheromone cloud never grows large enough to
initialize a mass attack. Consequently, a large-magni-

tude change in asymptotic behavior, reminiscent of a
first-order phase transition, occurs at large values of
d1.

4.3.     

To illustrate the pros and cons of the local
projection we have undertaken a comparison of
predictions in the local equations with statistics
derived from simulation of the global PDE in radial
coordinates. The PDE simulation was initialized with
parameters as in Table 2, and initial conditions of
spatial Gaussians with exact correspondence to the
local projection: Gaussians with amplitude and width
parameters set to match the initial conditions of the
local ODE model. The PDE solution technique was
a second-order Runge–Kutta predictor corrector,
with second-order centered discretization in space.
Since the chemical timescale are so much faster than
the MPB timescales, the implementation was designed
to allow the time step of the chemicals to be an integer
fraction of the total time step (generally chosen to be
ten, based on the order of magnitude differences in
diffusive scales). Even so, the extreme stiffness of the
equations required time steps on the order of 10−5,
making numerical solution of the governing PDE
extremely costly in time. We are currently testing
other methods of solution which should prove more
efficient. The solution difficulty for the PDE at this
point illustrates the entire reason why a strategy for
projection onto lower-dimensional systems is so
important.

In Figs 13 and 14 statistics from the partial
differential equation solutions (dashed lines) are
plotted against predictions from the local model (solid
lines). In Fig. 13 the raw number of MPB in the
simulation area is computed through radial inte-

F. 11. Temporal attack structure as a function of d1 between
200 and 1200.
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F. 13. Comparison of number of beetles responding to the
focus tree in the local ODE projection (solid) and the global PDE
model (dashed).

number of flying MPB is due to the same effect. In the
local model there is only one nesting site to serve as
a sink for flying MPB, whereas in the PDE model
there is a contiguous bio-mass of attackable forest
absorbing available flying MPB. Consequently, at
longer times there are more ‘‘trees’’ available to draw
down on beetle emergence, making the net number of
flying MPB lower in the PDE model at times larger
than forty.

The comparison of widths in Fig. 14 illustrates a
separate problem with the projection onto Gaussian
models. The dashed curve in Fig. 14 is calculated from
evaluating the integral

g
a

0

P(r, t)r3dr,

using P(r, t) from the PDE simulation. During the
focusing phase of the attack, the agreement between
the calculated and projected widths is good. However,
during the repulsive phase of the attack the agreement
is not even qualitatively correct beyond time 25 or so.
In fact, in the PDE simulations the attacks saturated
in a distinct ‘‘spot’’ of constant area. This is exactly
what should happen according to the model; there are
finitely many beetles attacking the trees, and
consequently a finite source in the chemical equations.
In two dimensions, concentration diffusion from a
finite source results in an asymptotically stable
concentration profile of constant size. Since the MPB
are chemotactic, this implies that the MPB should end
up in a ring of constant width, centered more or less
about the A=A0 isocline, and with numbers
decreasing to zero inside the ring. The only way that
the Gaussian ansatz can resolve the zero beetles at the
focus is for the number of MPB to go to zero. Then
for the projection to resolve a profile with a mean at
some distance from zero, the width must increase
without bound. This explains the disagreement
between the two graphs for long time; the Gaussian
ansatz is simply a bad description of the epidietic
wave of beetles repulsed from a successful infestation.
On the positive side, it is an accurate description
of the attraction and mass attack phase of the
interaction.

5. Conclusion

In this paper we have presented one approach to
moving from a complicated, infinite dimensional
system to a relatively uncomplicated, finite dimen-
sional system. The global MPB redistribution
processes described by nonlinear reaction-diffusion
PDE on a multi-kilometer scale were projected on

gration, and compared with the function p(t)
computed for the local model. The agreement is very
good up to and including the successful attack on the
focus tree (at r=0), and becomes much less exact for
later times. In part this is because the Gaussian ansatz
is least appropriate for the flying MPB in the
repulsion stage of an attack, which difference will be
more apparent in Fig. 14. More importantly, there are
no individual trees in the PDE model; the forest is a
continguous lump of biomass, like algae. Thus, when
the beetles are being repelled from one site, they
are being focused at another, which accounts for
the continued increase of MPB beyond focusing in the
PDE model. Later on, the apparent decrease in the

F. 14. Comparison of area scale, wp (t), of attacking MPB cloud
responding to the focus tree in the local ODE projection (solid) and
the global PDE model (dashed).
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local spatial modes representing spatial movements of
the population centered at a single focus tree. Even
though these local modes are not solutions to the
PDE as a whole, they have proven remarkably
descriptive of published observations of the behavior
of attacking MPB populations at the individual tree
level. In addition to providing an effective modeling
environment to address ecological questions regard-
ing MPB community structure and function, three
objectives motivated this work: connecting local data
with global parameter estimation, improving compu-
tational efficacy, and assisting the collaboration of
our research team. The effect of the model on these
issues is assessed below.

5.1.  

Parameter estimation is always a challenge in
development of credible ecological models (Logan,
1994). This difficulty is further compounded with
spatial models. Direct observations of beetle re-
sponses to pheromones and/or kairomones on the
scale of a stand or forest is not possible. As a result,
almost all field experimental data deal with the local
or point analysis (individual tree) of beetle response
to pheromones. While data from field experiments are
influenced by the flux of beetles from the background,
the global population responsible for these fluxes is
unknown and unmeasurable. The local projection
model we describe here represents the individual,
tree-level consequences that result from some
arbitrary background population, which is analogous
to the typical field situation. Because the local
projection model more nearly represents field
experiments, it is easier to interpret empirical results
for parameter estimation by the use of this model. For
example, in the descriptive runs above (Figs 1–3) we
chose parameter values partially in order to replicate
local observations of single-tree dynamics by Geiszler
et al. (1980). This would have been impossible
without a ‘‘local’’ formulation of the model. Now that
parameters have been estimated from the local
projection model, they can be used directly in the
global model. Additionally, because of the greater
similarity between the local projection model and field
experiments, it is easier to compare published results
to the local projection model. Using the technology of
the local model, we were able to successfully estimate
parameters and produce results in qualitative
agreement with observational data.

5.2.  

At least some of the reason for the paucity of
spatial models in ecological applications is due to
the mathematical and computational difficulty associ-

ated with partial differential equation models.
Solution procedures for PDEs are substantially more
difficult than for ODEs, and closed form solutions are
unlikely for most meaningful ecological models.
Although there is a rich theory for numerical solution
of PDEs, these solutions tend to be computationally
demanding. Numerical solutions to the global model
require at least work-station level computing power,
computational capabilities that are beyond the
ecological component of our collaborative team.
Computational intractability is particularly problem-
atic during model formulation. It is perhaps tenable
in management applications (for example in forest
planning or other management related activities) for
a model run to take hours, or even days. Such delays
during model development, when a multiplicity of
runs are required, are intolerable.

In contrast to the intractibility of the global model,
the local projection model is easily coded in an
application language such as Mathematica. In fact,
the projection formalism all but requires a symbolic-
computational approach. Programing in a symbolic
language allows for convenient modification of model
structure as well as all the output (i.e. graphics) power
of a commercial application. Since the local
projection model was derived directly from the global
model, insights gained through gaming with the
convenient local projection model can be incorpor-
ated immediately into the global model. This is not to
imply that the local projection model replaces the
global model. The two model formulations are
philosophically and procedurally quite different, and
each has its particular strengths and weaknesses.
However, by providing a computationally simple
version of the ecological interaction, the local
projection model facilitated rapid development of
both model representations.

5.3.    

The combined mathematical and empirical
difficulty of considering the explicit spatial dynamics
of MPB has provided significant motivation for
collaborative research. Either the mathematical or the
empirical aspects of MPB spatial dynamics, by
themselves are difficult problems. The most efficient
way to make significant progress is through an
effective collaboration between applied mathemati-
cians and MPB ecologists. Unfortunately, the
language of PDEs are esoteric, and model equations
couched in these terms are opaque to most field
ecologists (Holmes et al., 1994; Logan, 1994). The
global model derived in Section 2 requires several
hours for one run on a computational mainframe.
The result was that the mathematician on the team
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independently gamed and experimented with the
model, and then met with the ecologists to
demonstrate the resulting model behavior. At these
meetings, the ecologists attempted to evaluate model
dynamics and make suggestions regarding represen-
tation of model interactions, parameter values etc.,
but were unable to implement these suggestions on
their own to establish their utility. While we were able
to make progress, everyone felt that the pace was
slower than if we were all able to participate equally
in basic model formulation. We expect that our
experience is not unique, and that similar problems
are common impediments to effective collaborative
research.

Formulation and implementation of the local
projection model has done much to facilitate effective
collaboration for our team. The model has been
formulated as a Mathematica Notebook (Wolfram,
1991) with either the options of reconstructing a
projection from first principles (i.e. symbolically
deriving the local from the global model) or simply
changing parameters for the local model. Either
option runs in a reasonable amount of time on a
mid-range 486 PC, and it is always possible to
background a model run and proceed with word-
processing or other applications while the model is
running. Notebooks can be exchanged independent of
operating system and compuer. Since the model is
coded in a higher level language/application like
Mathematica, particular portions of the model can be
extracted for more in-depth exploration or develop-
ment. Functional representations can be modified
and/or completely changed, then reinserted into the
model. In short, the local model has gone a long way
toward allowing equal contribution from all research
team members. It has focused our independent efforts
as well.

It may seem that our approach to the local
modeling effort was long-winded. However, there is
no modeling technique we know of which is built
to include spatial redistribution and focusing in a
finite-dimensional model. The natural language to
speak about such phenomena is the mathematical
language of partial differential equations. However,
many observations about spatially dispersing systems
are of a ‘‘local’’ nature; attacks on a particular
host/prey by members of a spatially extended
population of parasites/predators spring to mind. We
have considered only the mass attack of mountain
pine beetles on individual pine trees, but similar
approaches to clouds of biting flies, swarms of bees,
and schools of fish may be equally interesting. The
technique of ‘‘local projection’’ which we have
presented here is a natural way to address such

questions. This approach makes the leap from
esoteric PDE models to more readily accessible ODE
models for localizing/focusing phenomena in natural
systems.

Research described in this article was supported in part
by USDA Forest Service co-operative research grant
number INT-94904-CCSA.
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